3.1 Espectros atómicos

Cuando se hace pasar la luz por un prisma, ésta se descompone en sus componentes, en un proceso denominado dispersión, tal y como puedes observar en la siguiente animación en la que se simula la descomposición de la luz blanca:

Animación 3. Kieff Dominio público

Al calentar un elemento gaseoso hasta que llega a la incandescencia, se produce una emisión de luz que, al hacerla pasar por un prisma, se descompone en forma de un espectro discontinuo, que consta de una serie de líneas correspondientes a determinadas frecuencias y longitudes de onda.

A este tipo de espectros se los conoce como espectros de emisión, y tienen la característica fundamental que cada elemento químico presenta un espectro característico propio, específico y diferente de los del resto de elementos, que sirve como "huella digital" permitiendo identificarlo fácilmente. A continuación se muestra el espectro de emisión del hidrógeno:

Imagen 11. Jkasd Licencia Creative Commons


Es posible también obtener el espectro de un gas de una forma complementaria, iluminando con luz blanca (que presenta todas las frecuencias posibles) una muestra del gas en cuestión, de forma que se observan unas líneas oscuras sobre el fondo iluminado, correspondientes a las longitudes de onda en las que el elemento absorbe la energía.

A este espectro se le conoce como espectro de absorción y es complementario al de emisión, puesto que las líneas de ambos coinciden para un mismo elemento, tal y como puedes observar en el espectro de absorción del hidrógeno que se muestra a continuación.

Imagen 12. Sassospicco Dominio público

Puedes observar los espectros de emisión y absorción de todos los elementos conocidos en el siguiente sitio web.

A la vista de estas series espectrales para el átomo de hidrógeno, resultó que el modelo atómico de Rutherford era incapaz de explicar por qué razón cuando se comunicaba energía a los átomos, después la emitían con unas frecuencias determinadas.

Por otra parte, según la física clásica una carga en movimiento emite continuamente energía, por lo que los electrones que giran alrededor del núcleo con aceleración centrípeta cada vez tendrían menos energía, y acabarían cayendo sobre el núcleo, radiando energía en dicho proceso y dando lugar a la destrucción del átomo. ¡Pero el átomo es estable!